Федеральное государственное бюджетное образовательное учреждение высшего образования

"Дальневосточный государственный университет путей сообщения" (ДВГУПС)

УТВЕРЖДАЮ

Зав.кафедрой

(к911) Физика и теоретическая механика

Пячин С.А., д.ф.-м.н., профессор

27.05.2025

РАБОЧАЯ ПРОГРАММА

дисциплины Физика

20.05.01 Пожарная безопасность

Составитель(и): к.ф.-м.н, доцент, Пикуль О.Ю.

Обсуждена на заседании кафедры: (к911) Физика и теоретическая механика

Протокол от 23.05.2025г. № 7

Обсуждена на заседании методической комиссии по родственным направлениям и специальностям: Протокол

Визирование РПД для исполнения в очередном учебном году
Председатель МК РНС
2026 г.
Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2026-2027 учебном году на заседании кафедры (к911) Физика и теоретическая механика
Протокол от 2026 г. № Зав. кафедрой Пячин С.А., д.фм.н., профессор
Визирование РПД для исполнения в очередном учебном году
Председатель МК РНС
2027 г.
Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2027-2028 учебном году на заседании кафедры (к911) Физика и теоретическая механика
Протокол от 2027 г. № Зав. кафедрой Пячин С.А., д.фм.н., профессор
Визирование РПД для исполнения в очередном учебном году
Визирование РПД для исполнения в очередном учебном году Председатель МК РНС
Председатель МК РНС
Председатель МК РНС 2028 г. Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2028-2029 учебном году на заседании кафедры
Председатель МК РНС

Рабочая программа дисциплины Физика

разработана в соответствии с Φ ГОС, утвержденным приказом Министерства образования и науки Российской Федерации от 25.05.2020 № 679

Квалификация Специалист

Форма обучения очная

ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ) В ЗАЧЕТНЫХ ЕДИНИЦАХ С УКАЗАНИЕМ КОЛИЧЕСТВА АКАДЕМИЧЕСКИХ ЧАСОВ, ВЫДЕЛЕННЫХ НА КОНТАКТНУЮ РАБОТУ ОБУЧАЮЩИХСЯ С ПРЕПОДАВАТЕЛЕМ (ПО ВИДАМ УЧЕБНЫХ ЗАНЯТИЙ) И НА САМОСТОЯТЕЛЬНУЮ РАБОТУ ОБУЧАЮЩИХСЯ

Общая трудоемкость 10 ЗЕТ

Часов по учебному плану 360 Виды контроля в семестрах:

в том числе: экзамены (семестр) 2

контактная работа 136 зачёты (семестр) 1

самостоятельная работа 188 PГР 1 сем. (1), 2 сем. (1)

часов на контроль 36

Распределение часов дисциплины по семестрам (курсам)

Семестр (<Курс>.<Семес тр на курсе>)	1 (1	1.1)	2 (1	2 (1.2)		Итого
Недель	1	8	1	7		
Вид занятий	УП	РΠ	УП	РΠ	УП	РП
Лекции	32	32	16	16	48	48
Лабораторные	16	16	16	16	32	32
Практические	16	16	16	16	32	32
Контроль самостоятельно й работы	10	10	14	14	24	24
В том числе инт.	20	20			20	20
Итого ауд.	64	64	48	48	112	112
Контактная работа	74	74	62	62	136	136
Сам. работа	106	106	82	82	188	188
Часы на контроль			36	36	36	36
Итого	180	180	180	180	360	360

1. АННОТАЦИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

1.1 Механика: Законы механики поступательного и вращательного движения материальной точки и твёрдого тела, законы сохранения механической энергии, импульса, момента импульса. Молекулярная физика и термодинамика: Основы молекулярно-кинетической теории. Термодинамика. Основы классической статистической физики. Электромагнетизм: Электростатика. Законы постоянного тока. Магнитное поле в вакууме и в веществе Колебания и волны: Свободные и вынужденные колебания. Волны. Электромагнитное поле. Оптика: Волновая оптика. Квантовая механика: Квантово-механическое описание поведения микрочастиц. Элементы ядерной физики и физики элементарных частиц.

	2. МЕСТО ДИСЦИПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ								
Код дис	Код дисциплины: Б1.О.07								
2.1	2.1 Требования к предварительной подготовке обучающегося:								
2.1.1	2.1.1 Высшая математика								
2.2	Дисциплины и практики, для которых освоение данной дисциплины (модуля) необходимо как								
	предшествующее:								
	предшествующее:								
2.2.1	предшествующее: Физико-химические основы развития и тушения пожаров								
	* * * * * * * * * * * * * * * * * * *								

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ), СООТНЕСЕННЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

ОПК-1: Способен осуществлять профессиональную деятельность на объектах различного функционального назначения, включая опасные и особо опасные объекты в областях контрольно-надзорной деятельности, профилактической работы и охраны труда, экологической безопасности;

Знать:

Нормативно-правовые акты в области обеспечения пожарной безопасности, ликвидации последствий чрезвычайных ситуаций, защиты и спасения человека, защиты окружающей среды

Уметь:

осуществлять профессиональную деятельность на объектах различного функционального назначения, включая опасные и особо опасные объекты в областях контрольно-надзорной деятельности, профилактической работы и охраны труда, экологической безопасности

Владеть:

Код

занятия

Наименование разделов и тем /вид

занятия/

Способностью осуществлять профессиональную деятельность на объектах различного функционального назначения, включая опасные и особо опасные объекты в областях контрольно-надзорной деятельности, профилактической работы и охраны труда, экологической безопасности

Семестр

/ Курс

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ), СТРУКТУРИРОВАННОЕ ПО ТЕМАМ (РАЗДЕЛАМ) С УКАЗАНИЕМ ОТВЕДЕННОГО НА НИХ КОЛИЧЕСТВА АКАДЕМИЧЕСКИХ ЧАСОВ И ВИДОВ УЧЕБНЫХ ЗАНЯТИЙ

часов

Компетен-

шии

Инте

Примечание

Литература

				· ·		•	
	Раздел 1. Лекции						
1.1	1. Механика. Законы механики поступательного движения материальной точки и твёрдого тела. Кинематика. Динамика. Законы Ньютона. /Лек/	1	2	ОПК-1	Л1.1Л2.1 Э1 Э2	2	Активное слушание
1.2	2. Законы механики вращательного движения материальной точки и твёрдого тела. Кинематические характеристики вращательного движения. Основной закон динамики вращательного движения твердого тела. /Лек/	1	2	ОПК-1	л1.1л2.1 Э1 Э2	0	
1.3	3. Законы сохранения механической энергии, импульса, момента импульса. Центр масс. Работа и энергия как универсальная мера различных форм движения и взаимодействия. Консервативные силы. /Лек/	1	2	ОПК-1	л1.1л2.1 Э1 Э2	0	

	1		1	1	1	1	
1.4	4. Элементы теории поля тяготения. Законы Кеплера. Закон всемирного тяготения. Поле тяготения и его напряженность. Работа в поле тяготения. Потенциал поля тяготения. Элементы специальной теории относительности. /Лек/	1	2	ОПК-1	Л1.1Л2.1 Э1 Э2	0	
1.5	5. Колебания и волны: Свободные и вынужденные механические колебания. Вывод дифференциальных уравнений. Механические волны - бегущая волна, стоячая волна. /Лек/	1	2	ОПК-1	Л1.1Л2.1 Э1 Э2	0	
1.6	6. Молекулярная физика и термодинамика. Основы молекулярнокинетической теории. Статистический и термодинамический методы. Опытные законы идеального газа. Уравнение Клапейрона-Менделеева. Вывод основного уравнения молекулярно-кинетической теории идеальных газов. /Лек/	1	2	ОПК-1	Л1.1Л2.1 Э1 Э2	0	
1.7	7. Основы классической статистической физики. Закон Максвелла о распределении молекул идеального газа по скоростям и энергиям теплового движения. Барометрическая формула. Распределение Больцмана для частиц во внешнем потенциальном поле. Длина свободного пробега молекул. Вакуум и методы его получения. Свойства ультраразреженных газов. /Лек/	1	2	ОПК-1	Л1.1Л2.1 Э1 Э2	0	
1.8	8. Опытное обоснование молекулярно- кинетической теории. Явления переноса в термодинамически неравновесных системах. Опытные законы диффузии, теплопроводности, внутреннего трения. /Лек/	1	2	ОПК-1	Л1.1Л2.1 Э1 Э2	0	
1.9	9. Термодинамика. Число степеней свободы. Закон равномерного распределения энергии по степеням свободы молекул. Первое начало термодинамики. Работа газа при изменении объема. Внутренняя энергия идеального газа. Теплоемкость. Применение первого начала термодинамики к изопроцессам. Адиабатный процесс. Политропный процесс. Обратимые и необратимые процессы. Круговой цикл. /Лек/	1	2	ОПК-1	Л1.1Л2.1 Э1 Э2	0	
1.10	10.Энтропия, ее статистическое толкование и связь с термодинамической вероятностью. Второе начало термодинамики. Тепловые двигатели. Цикл Карно и его КПД для идеального газа. Третье начало термодинамики. /Лек/	1	2	ОПК-1	Л1.1Л2.1 Э1 Э2	0	

1.11	11. Реальные газы и жидкости. Силы и	1	2	ОПК-1	Л1.1Л2.1	0	
1.11	П.Реальные газы и жидкости. Силы и потенциальная энергия межмолекулярного взаимодействия. Уравнение Ван-дер-Ваальса. Изотермы Ван-дер-Ваальса и их анализ. Внутренняя энергия реального газа. Эффект Джоуля-Томсона. Сжижение газов. /Лек/	1	2	OHK-1	Э1 Э2	U	
1.12	12. Свойства жидкостей. Поверхностное натяжение. Смачивание. Давление под искривленной поверхностью жидкости. Капиллярные явления. Элементы механики жидкости. Уравнение неразрывности. Уравнение Бернулли и следствия из него. Ламинарный и турбулентный режимы течения жидкостей. Методы определения вязкости жидкостей - метод Стокса, метод Пуазейля. Движение тел в жидкостях и газах. /Лек/	1	2	ОПК-1	Л1.1Л2.1 Э1 Э2	2	Активное слушание
1.13	13. Твердые тела. Теплоемкость твердых тел. Испарение, сублимация, плавление и кристаллизация. Аморфные тела. Фазовые переходы I и II рода. Диаграмма состояния. Тройная точка. /Лек/	1	2	ОПК-1	Л1.1Л2.1 Э1 Э2	0	
1.14	14.Электромагнетизм: Электростатика. Электростатика в вакууме и в веществе. Поток вектора напряженности. Теорема Гаусса и ее применение к расчету полей. Потенциал. Работа электростатического поля. Связь напряженности поля и разности потенциалов. /Лек/	1	2	ОПК-1	Л1.1Л2.1 Э1 Э2	0	
1.15	15.Проводники и диэлектрики в электрическом поле. Электроемкость уединенного проыодника. Конденсаторы. Поляризация диэлектриков. Поляризованность. Сегнетоэлектрики.Диэлектрический гистерезис. /Лек/	1	2	ОПК-1	Л1.1Л2.1 Э1 Э2	0	
1.16	16. Законы постоянного тока - законы Ома в дифференциальной и интегральной формах, закон Джоуля-Ленца. Работа и мощность тока. /Лек/	1	2	ОПК-1	Л1.1Л2.1 Э1 Э2	0	
2.1	Раздел 2. Лабораторные работы	4		OTT 1	H1 1 H2 1 H2		
2.1	Лабораторная работа по механике (2м) /Лаб/	1	2	ОПК-1	Л1.1Л2.1Л3. 1 Э1 Э2	0	
2.2	Лабораторная работа по механике (4м) /Лаб/	1	2	ОПК-1	Л1.1Л3.1 Э1 Э2	0	
2.3	Лабораторная работа по молекулярной физике и термодинамике (6м) /Лаб/	1	2	ОПК-1	Л1.1Л2.1Л3. 1 Э1 Э2	0	
2.4	Прием отчетов /Лаб/	1	2	ОПК-1	Л1.1Л3.1 Э1 Э2	0	
2.5	Лабораторная работа по молекулярной физике и термодинамике (9м) /Лаб/	1	2	ОПК-1	Л1.1Л2.1Л3. 1 Л3.2 Э1 Э2	0	
2.6	Лабораторная работа по электростатике (5э) /Лаб/	1	2	ОПК-1	Л1.1Л2.1Л3. 2 Э1 Э2	0	

2.7	Лабораторная работа по электричеству (4э, 9э) /Лаб/	1	2	ОПК-1	Л1.1Л2.1Л3. 2 Э1 Э2	0	
2.8	Прием отчетов /Лаб/	1	2	ОПК-1	Л1.1Л2.1Л3. 1 Л3.2 Э1 Э2	0	
	Раздел 3. Практические занятия						
3.1	Решение задач по теме "Виды движения, кинематика и динамика поступательного и вращательного движений". /Пр/		2	ОПК-1	Л1.1Л2.1 Э1 Э2	2	Диспут
3.2	Решение задач по теме "Законы сохранения. Работа и энергия" /Пр/	1	2	ОПК-1	Л1.1Л2.1 Э1 Э2	2	Работа в малых группах
3.3	Решение задач по теме "Механические колебания. Механическая волна» /Пр/	1	2	ОПК-1	Л1.1Л2.1 Э1 Э2	2	Диспуты
3.4	Решение задач по теме «Молекулярно- кинетическая теория.» /Пр/	1	2	ОПК-1	Л1.1Л2.1 Э1 Э2	2	Работа в малых группах
3.5	Решение задач по теме «Статистическая физика» /Пр/	1	2	ОПК-1	Л1.1Л2.1 Э1 Э2	2	Работа в малых группах
3.6	Решение задач по теме «Термодинамика» /Пр/	1	2	ОПК-1	Л1.1Л2.1 Э1 Э2	2	Работа в малых группах
3.7	Решение задач по теме «Электростатика. Теорема Гаусса» /Пр/	1	2	ОПК-1	Л1.1Л2.1 Э1 Э2	2	Работа в малых группах
3.8	Решение задач по теме «Законы постоянного тока» /Пр/	1	2	ОПК-1	Л1.1Л2.1 Э1 Э2	2	Работа в малых группах
	Раздел 4. Самостоятельная работа						
4.1	Изучение теоретического материала по учебной и учебно-методической литературе /Ср/	1	34	ОПК-1	Л1.1Л2.1 Э1 Э2	0	
4.2	Подготовка к выполнению лабораторной работы (оформление заготовки) /Ср/	1	24	ОПК-1	Л1.1Л2.1Л3. 1 Л3.2 Э1 Э2	0	
4.3	Выполнение и оформление расчетно- графической работы, защита расчетно- графической работы /Ср/	1	24	ОПК-1	Л1.1Л2.1 Э1 Э2	0	
4.4	Подготовка к промежуточному и итоговому тестированию по отдельным разделам и всему курсу /Ср/	1	6	ОПК-1	Л1.1Л2.1 Э1 Э2	0	
4.5	Подготовка к зачету. Зачет. /Ср/	1	18			0	
	Раздел 5. Лекции	_					
5.1	1.Электромагнетизм: Магнитное поле в вакууме и в веществе. Сила Лоренца и сила Ампера. Вектор магнитной индукции. Движение заряженной частицы в электрическом и магнитном полях. /Лек/	2	2	ОПК-1	Л1.1Л2.1 Э1 Э2	0	
5.2	2. Закон Био-Савара-Лапласа. Принцип суперпозиции. Поле прямолинейного и кругового токов. Вихревой характер магнитного поля. Закон полного тока для магнитного поля в вакууме и применение его к расчету магнитного поля тороида и длинного соленоида. /Лек/	2	2	ОПК-1	Л1.1Л2.1 Э1 Э2	0	
5.3	3. Магнитный поток. Работа по перемещению проводника, контура с током в магнитном поле. Опыты Фарадея. Явление электромагнитной индукции. Самоиндукция. Взаимная индукция. Фарадеевская и Максвелловская трактовки явления электромагнитной индукции. /Лек/	2	2	ОПК-1	Л1.1Л2.1 Э1 Э2	0	

5.4	4. Электромагнитные колебания. Колебательный контур. Собственные колебания контура. Затухающие колебания. Вынужденные колебания. Уравнения Максвелла в интегральной и дифференциальной форме. Электромагнитное поле. Скорость распространения электромагнитной волны. Вектор Умова-Пойнтинга. /Лек/	2	2	ОПК-1	Л1.1Л2.1 Э1 Э2	0	
5.5	5.Оптика:Волновая оптика.Интерференция света. Дифракция света. Поляризация света. /Лек/	2	2	ОПК-1	Л1.1Л2.1 Э1 Э2	0	
5.6	6.Оптика:Квантовая оптика.Тепловое излучение. Световое давление. Эффект Комптона. /Лек/	2	2	ОПК-1	Л1.1Л2.1 Э1 Э2	0	
5.7	7. Квантовая механика: Квантово- механическое описание поведения микрочастиц. /Лек/	2	2	ОПК-1	Л1.1Л2.1 Э1 Э2	0	
5.8	8. Элементы ядерной физики и физики элементарных частиц. /Лек/	2	2	ОПК-1	Л1.1Л2.1 Э1 Э2	0	
	Раздел 6. Лабораторные работы						
6.1	2о Интерференция света /Лаб/	2	2	ОПК-1	Л1.1Л2.1Л3. 2 Э1 Э2	0	
6.2	5о Дисперсия света /Лаб/	2	2	ОПК-1	Л1.1Л2.1Л3. 2 Э1 Э2	0	
6.3	60 Внешний фотоэффект /Лаб/	2	2	ОПК-1	Л1.1Л2.1Л3. 2 Э1 Э2	0	
6.4	7о Тепловое излучение /Лаб/	2	2	ОПК-1	Л1.1Л2.1Л3. 2 Э1 Э2	0	
6.5	2а Строение атома /Лаб/	2	2	ОПК-1	Л1.1Л2.1Л3. 3 Э1 Э2	0	
6.6	10а Излучение оптического квантового генератора. /Лаб/	2	2	ОПК-1	Л1.1Л2.1Л3. 3 Э1 Э2	0	
6.7	5а р-п переход /Лаб/	2	2	ОПК-1	Л1.1Л2.1Л3. 3 Э1 Э2	0	
6.8	Прием лабораторных отчетов /Лаб/	2	2	ОПК-1	Л1.1Л2.1Л3. 3 Э1 Э2	0	
	Раздел 7. Практические занятия						
7.1	Решение задач по теме "Магнитостатика." /Пр/ Решение задач по теме "Уравнения	2	2	ОПК-1 ОПК-1	Л1.1Л2.1 Э1 Э2 Л1.1Л2.1	0	
	Максвелла. Электромагнитная волна" /Пр/				91 92		
7.3	Решение задач по теме "Интерференция света." /Пр/	2	2	ОПК-1	Л1.1Л2.1 Э1 Э2	0	
7.4	Решение задач по теме "Дифракция световых волн. Принцип Гюйгенса- Френеля. /Пр/	2	2	ОПК-1	Л1.1Л2.1 Э1 Э2	0	
7.5	Решение задач по теме "Поляризация света" /Пр/	2	2			0	
7.6	Решение задач по теме "Тепловое излучение. Внешний фотоэффект." /Пр/	2	2	ОПК-1	Л1.1Л2.1 Э1 Э2	0	

7.7	Решение задач по теме "Эффект Комптона. Давление света." /Пр/	2	2	ОПК-1	Л1.1Л2.1 Э1 Э2	0	
7.8	Решение задач по теме "Принцип неопределенности. Волны Де-Бройля. Уравнение Шредингера." /Пр/	2	2	ОПК-1	Л1.1Л2.1 Э1 Э2	0	
	Раздел 8. Самостоятельная работа						
8.1	Изучение теоретического материала по учебной и учебно-методической литературе /Ср/	2	30	ОПК-1	Л1.1Л2.1 Э1 Э2	0	
8.2	Подготовка к выполнению лабораторной работы (оформление заготовки) /Ср/	2	22	ОПК-1	Л1.1Л2.1Л3. 2 Л3.3 Э1 Э2	0	
8.3	Отработка навыков решения задач, выполнение и защита расчетно-графической работы /Ср/	2	24	ОПК-1	Л1.1Л2.1 Э1 Э2	0	
8.4	Подготовка к промежуточному и итоговому тестированию по отдельным разделам и всему курсу /Ср/	2	6	ОПК-1	Л1.1Л2.1 Э1 Э2	0	
	Раздел 9. Контроль						
9.1	Подготовка к экзамену /Экзамен/	2	36	ОПК-1	Л1.1Л2.1Л3. 1 Л3.2 Л3.3 Э1 Э2	0	

5. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУГОЧНОЙ АТТЕСТАЦИИ Размещены в приложении

	6. УЧЕБНО-МЕТОДИ	ЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСП	(ИПЛИНЫ (МОДУЛЯ)							
		6.1. Рекомендуемая литература								
	6.1.1. Перечень основной литературы, необходимой для освоения дисциплины (модуля)									
	Авторы, составители	Заглавие	Издательство, год							
Л1.1	Трофимова Т.И.	Курс физики: учеб. пособие для вузов	Москва: Академия, 2016,							
	6.1.2. Перечень дополнительной литературы, необходимой для освоения дисциплины (модуля)									
Авторы, составители Заглавие Издательство,										
Л2.1 Савельев И.В. Сборник вопросов и задач по общей физике: учеб. пособие для вузов Санкт-Петербург: Лань										
6.	1.3. Перечень учебно-м	етодического обеспечения для самостоятельной работы обуч	пающихся по дисциплине							
	(модулю) Авторы, составители Заглавие Издательство, год									
	Авторы, составители	Издательство, год								
Л3.1	Литвинова М.Н.	Физика: Механика. Молекулярная физика и термодинамика: сб. лаб. работ	Хабаровск : Изд-во ДВГУПС, 2016,							
Л3.2	Литвинова М.Н.	Хабаровск : Изд-во ДВГУПС, 2016,								
Л3.3	Литвинова М.Н.	Физика: Оптика. Физика атома и твердого тела: сб. лаб. работ	Хабаровск : Изд-во ДВГУПС, 2016,							
6.	2. Перечень ресурсов и	нформационно-телекоммуникационной сети "Интернет", н	еобходимых для освоения							
		дисциплины (модуля)								
Э1	Электронный каталог І	НТБ ДВГУПС	http://lib.festu.khv.ru							
Э2	Научная электронная б	иблиотека eLIBRARY.RU	https://www.elibrary.ru							
		онных технологий, используемых при осуществлении обра слючая перечень программного обеспечения и информацио								
A	ециине (нодуно), вк	(при необходимости)	mon enpudo mon encress							
		6.3.1 Перечень программного обеспечения								
W	indows XP - Операционі	ная система, лиц. 46107380								
		rsity Edition - Математический пакет, контракт 410								
V	isio Pro 2007 - Векторны	й графический редактор, редактор диаграмм и блок-схем, лиц.45	5525415							
W	inRAR - Архиватор, лиц	,LO9-2108, б/c								
	нтивирус Kaspersky End 69 ДВГУПС	point Security для бизнеса – Расширенный Russian Edition - Анти	ивирусная защита, контракт							

Антиплагиат - Система автоматической проверки текстов на наличие заимствований из общедоступных сетевых источников, контракт 12724018158180000974/830 ДВГУПС

ACT тест - Комплекс программ для создания банков тестовых заданий, организации и проведения сеансов тестирования, лиц. ACT.PM. A096. Л08018.04, дог. 372

Free Conference Call (свободная лицензия)

Zoom (свободная лицензия)

6.3.2 Перечень информационных справочных систем

Профессиональная база данных, информационно-справочная система КонсультантПлюс - http://www.consultant.ru

7. 0	ПИСАНИЕ МАТЕРИАЛЬНО-ТЕХНИЧЕСК ОБРАЗОВАТЕЛЬНОГО ПРОЦІ	ОЙ БАЗЫ, НЕОБХОДИМОЙ ДЛЯ ОСУЩЕСТВЛЕНИЯ ЕССА ПО ДИСЦИПЛИНЕ (МОДУЛЮ)
Аудитория	Назначение	Оснащение
123	Помещения для самостоятельной работы обучающихся. зал электронной информации	Тематические плакаты, столы, стулья, стеллажи Компьютерная техника с возможностью подключения к сети Интернет, свободному доступу в ЭБС и ЭИОС.
3317	Помещения для самостоятельной работы обучающихся. Читальный зал НТБ	Тематические плакаты, столы, стулья, стеллажи Компьютерная техника с возможностью подключения к сети Интернет, свободному доступу в ЭБС и ЭИОС.
3431	Учебная аудитория для лабораторных занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Лаборатория "Электричество".	комплект учебной мебели, доска, тематические плакаты, однополярный высоковольтный источник напряжения, осциллограф, термопара, гальванометр, нагреватель, генератор звуковой частоты, источник тока, вольтметр, амперметр, установка для определения изменения энтропии ФПТ1-11.
3434	Учебная аудитория для проведения занятий лекционного типа.	комплект учебной мебели, тематические плакаты. Технические средства обучения: интерактивная доска, проектор, ноутбук. Лицензионное программное обеспечение: Windows 10 Pro для образовательных учреждений, версия 1909; Microsoft Office Pro Plus 2007; лиц. 168699; Антивирус Kaspersky Endpoint Security
3435	Учебная аудитория для лабораторных занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Лаборатория "Электромагнетизм".	комплект учебной мебели, доска, тематические плакаты, модули "Изучение свойств сегнетоэлектриков" ФПЭ-02, "Изучение магнитного поля соленоида с помощью датчика Холла" ФПЭ-04, "Изучение гистерезиса ферромагнитных материалов" ФПЭ-07, "Исследование затухающих колебаний" ФПЭ-10, "Изучение вынужденных колебаний" ФПЭ-11, "Определение отношения заряда электрона к его массе методом магнетрона" ФПЭ-03, "Изучение релаксационных колебаний" ФПЭ-12, "Магазин сопротивления" ФПЭ-МС, "Магазин емкостей" ФПЭ-МЕ, "Источник питания" ФПЭ-ИП, осциллограф, генератор, мультиметр. Технические средства обучения: ПК. Лицензионное программное обеспечение: Office Pro Plus 2007, лиц. 45525415, Total Commander – LO9-2108 от 22.04.2009, Windows XP, лиц. 46107380.
535	Учебная аудитория для лабораторных занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. Лаборатория "Оптика".	комплект учебной мебели, доска, тематические плакаты, установка "Изучение интерференционной схемы "колец Ньютона" ФПВ -05-2-2, установка "Получение и исследование поляризованного света" ФПВ-05-4-1, установка "Изучение дифракционной решетки и дисперсионной стеклянной призмы" ФПВ-05-3/5-1, установка для изучения абсолютно черного тела ФПК-11, установка для изучения внешнего фотоэффекта ФПК-10. Технические средства обучения: интерактивная доска.
2537	Учебная аудитория для проведения практических занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации.	комплект учебной мебели, доска, тематические плакаты, установка для определения длины пробега частиц в воздухе (определение длины пробега Альфа-частиц ФПК-03, установка для изучения р-п перехода ФПК-06, установка для изучения температурной зависимости электропроводности металлов и полупроводников ФПК-07, установка для изучения спектра атома водорода ФПК-09, монохроматор МУМ (для ФПК-09), установка для излучения космических лучей ФПК-01, установка для изучения энергетического спектра электронов (изучение Бета - радиоактивности) ФПК-05, установка для изучения и анализа свойств материалов с помощью сцинтилляционного счетчика (изучение Гамма – радиоактивных элементов) ФПК-13, установка для определения резонансного потенциала методом Франка и Герца ФПК-02.
3532	Учебная аудитория для проведения лабораторных и практических занятий. Лаборатория "Численное моделирование физических процессов".	потенциала методом Франка и герца ФПК-02. Комплект учебно-лабораторного оборудования «Общая физика» в составе 10 лабораторных работ с применением технологии виртуальной реальности Лицензионное программное обеспечение: Windows 10 Pro для образовательных учреждений, версия 1909; Microsoft Office Pro Plus 2007; лиц. 168699; Антивирус Kaspersky Endpoint Security

Аудитория	Назначение	Оснащение
101	Компьютерный класс для практических, лабораторных занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, а также для самостоятельной работы. Кабинет информатики (компьютерные классы) *.	комплект учебной мебели. Технические средства обучения: компьютерная техника с возможностью подключения к сети Интернет, свободному доступу в ЭБС и ЭИОС (Intel(R) Core(TM) i5-3570К СРU @ 3.40GHz, 4Gb, int Video, 1 Tb, DVD+RW, ЖК 19). Лицензионное программное обеспечение: Windows 10 Pro - MS DreamSpark 700594875, 7-Zip 16.02 (x64) (свободно распространяемое ПО), Autodesk 3ds Max 2019, Autodesk AutoCAD 2021, Autodesk AutoCAD Architecture 2021, Autodesk Inventor 2021, Autodesk Revit 2021- Для учебных заведений предоставляется бесплатно, Fохіt Reader (свободно распространяемое ПО), MATLAB R2013b - Контракт 410 от 10.08.2015, Microsoft Office Профессиональный плюс 2007 - 43107380, Microsoft Visio профессиональный 2013 - MS DreamSpark 700594875, Microsoft Visual Studio Enterprise 2017- MS DreamSpark 700594875, Mozilla Firefox 99.0.1 (свободно распространяемое ПО), Opera Stable 38.0.2220.41 (свободно распространяемое ПО), PTC Mathcad Prime 3.0 - Контракт 410 от 10.08.2015, лиц. 3A1874498, КОМПАС-3D V19 - КАД-19-0909.ПЭВМ с возможностью выхода в интернет по расписанию Windows 10 Pro Контракт №235 ДВГУПС от 24.08.2021; Office Pro Plus 2019 Контракт №235 от 24.08.2021; Kaspersky Endpoint Security Контракт № 0322100012923000077 от 06.06.2023; КОМПАС-3D V19 Контракт № 995 от 09.10.2019; nanoCAD Номер лицензии: NC230P-81412 Срок действия: с 01.08.2023 по 31.07.2024;
201	Компьютерный класс для практических и лабораторных занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, а также для самостоятельной работы.	Технические средства обучения: компьютерная техника с возможностью подключения к сети Интернет, свободному доступу в ЭБС и ЭИОС, проектор. Лицензионное программное обеспечение: Windows 10 Pro - MS DreamSpark 700594875, 7-Zip 16.02 (x64) - Свободное ПО, Autodesk 3ds Max 2021, Autodesk AutoCAD 2021, Autodesk AutoCAD Architecture 2021, Autodesk Inventor 2021, Autodesk Revit 2021- Для учебных заведений предоставляется бесплатно, Foxit Reader-Свободное ПО, MATLAB R2013b - Контракт 410 от 10.08.2015, Microsoft Office Профессиональный плюс 2007 - 43107380, Microsoft Visio профессиональный 2013 - MS DreamSpark 700594875, Microsoft Visual Studio Enterprise 2017- MS DreamSpark 700594875, Mozilla Firefox 99.0.1 - Свободное ПО, Opera Stable 38.0.2220.41 - Свободное ПО, PTC Mathcad Prime 3.0 - Контракт 410 от 10.08.2015 лиц. 3A1874498, КОМПАС-3D V19 - КАД-19-0909, ACT-Тест лиц. ACT.PM.A096.Л08018.04, Договор № Л-128/21 от 01.06.2021 с 01 июля 2021 по 30 июня 2022. ПЭВМ с возможностью выхода в интернет по расписанию Windows 10 Pro Контракт №235 ДВГУПС от 24.08.2021; Оffice Pro Plus 2019 Контракт № 0322100012923000077 от 06.06.2023; КОМПАС-3D V19 Контракт № 995 от 09.10.2019; nanoCAD Номер лицензии: NC230P-81412 Срок действия: с 01.08.2023 по 31.07.2024;
3417	Учебная аудитория для проведения практических занятий, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации.	комплект учебной мебели, доска, тематические плакаты

8. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ ОБУЧАЮЩИХСЯ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ (МОДУЛЯ)

Методические рекомендации по работе над конспектом лекций во время и после проведения лекции.

В ходе лекционных занятий студентам необходимо вести конспектирование учебного материала, при этом запись лекций рекомендуется вести по возможности собственными формулировками. Желательно оставить в рабочих конспектах поля, на которых во внеаудиторное время можно сделать пометки из рекомендованной литературы, дополняющие материал прослушанной лекции, а также подчеркивающие особую важность тех или иных теоретических положений. Следует обращать внимание на категории, формулировки, раскрывающие содержание тех или иных явлений и процессов, научные выводы и практические рекомендации по их применению, а также задавать преподавателю уточняющие вопросы с целью уяснения теоретических положений, разрешения спорных ситуаций. Над конспектами лекций надо систематическим работать: первый просмотр конспекта рекомендуется сделать вечером того дня, когда была прослушана лекции, затем

вновь просмотреть конспект через 3-4 дня. В этом случае при небольших затратах времени студент основательно и глубоко овладевает материалом и к сессии приходит хорошо подготовленным. Работая над конспектом лекций, всегда следует использовать не только учебник, но и ту литературу, которую дополнительно рекомендовал лектор. Самостоятельная подготовка студента к следующей лекции должна состоять в первую очередь в перечитывании конспекта предыдущей лекции.

Методические рекомендации к лабораторным работам

Преподаватель, ведущий лабораторные работы, сообщает студентам: перечень лабораторных работ, последовательность их выполнения, рекомендуемые учебно-методические пособия, руководства и др. Целью лабораторных работ является закрепление знаний, полученных студентами при самостоятельном изучении дисциплины. При выполнении лабораторной работы необходимо руководствоваться литературой, предусмотренной рабочей программой по данной дисциплине и указанной преподавателем. В первом семестре выполняются 6 лабораторных работ по темам: "Механика", "Молекулярная физика", "Электростатика". Во втором семестре выполняются лабораторные работы по теме "Магнетизм", "Волновая и квантовая оптика", "Атомная физика". Заготовка для лабораторной работы выполняется предварительно в домашних условиях и содержит цель работы, приборы и принадлежности, краткую теоретическую часть, расчетные формулы и таблицы по теме лабораторной работы. Защита лабораторной работы проводится на лабораторном занятии в форме собеседования с преподавателем.

Методические рекомендации к практическим занятиям

В течение практического занятия студенту необходимо выполнить задания, выданные преподавателем, для этого при подготовке к практическим занятиям студентам необходимо изучить основную литературу, ознакомиться с дополнительной литературой с учетом рекомендаций преподавателя и требований учебной программы.

Методические рекомендации для подготовки к защите РГР. В первом семестре выполнется одна расчетно-графическая работа по теме: "Механика. Электричество".

Примерные вопросы для защиты РГР:

- 1. Второй закон Ньютона для поступательного движения.
- 2. Работа и мощность в механике.
- 3. Законы сохранения импульса, момента импульса, механической энергии.
- 4. Основной закон вращательного движения твердого тела.
- 5. Теорема Остроградского-Гаусса.
- 6. Законы постоянного тока.

Во втором семестре выполняется одна расчетно-графическая работа по теме: "Магнетизм. Оптика".

Примерные вопросы для защиты РГР:

- 1. Закон Био-Савара-Лапласа в дифференциальной форме.
- 2. Основной закон электромагнитной индукции.
- 3. Индуктивность соленоида.
- 4. Условия наблюдения интерференционных максимумов и минимумов.
- 5. Законы теплового излучения.

Выполнение РГР осуществляется в домашних условиях. Для защиты РГР студент самостоятельно изучает вопросы соответствующего раздела теории, повторяет физические законы и явления, необходимые для решения конкретной задачи. Защита РГР происходит на консультации, в установленное преподавателем время. Положительная отметка, полученная студентом при защите, выступает необходимой составляющей для допуска к экзамену/зачету по данной дисциплине. Самостоятельная работа студентов.

Виды самостоятельной работы студентов и их состав:

- •изучение теоретического материала по учебной и учебно-методической литературе;
- •отработка навыков решения задач по темам практических занятий;
- •выполнение и оформление расчетно-графическоой работы;
- •подготовка к защите расчетно-графической работы;
- •подготовка к промежуточному и итоговому тестированию по отдельным разделам и всему курсу;
- •подготовка к зачету.

Технология организации самостоятельной работы обучающихся включает использование информационных и материальнотехнических ресурсов образовательного учреждения: библиотеку с читальным залом, укомплектованную в соответствии с существующими нормами; учебно-методическую базу учебных кабинетов, лабораторий; компьютерные классы с возможностью работы в сети Интернет; аудитории для консультационной деятельности; учебную и учебно-методическую литературу, разработанную с учетом увеличения доли самостоятельной работы студентов, и иные методические материалы.

Подготовка к зачету/экзамену.

При подготовке к зачету/экзамену необходимо ориентироваться на конспекты лекций, рабочую программу дисциплины, нормативную, учебную и рекомендуемую литературу. Основное в подготовке к экзамену/зачету - это повторение всего материала дисциплины, по которому необходимо сдавать зачет/экзамен. При подготовке к сдаче экзамена/зачета студент весь объем работы должен распределять равномерно по дням, отведенным для подготовки к зачету, контролировать каждый день выполнение намеченной работы. В период подготовки к зачету/экзамену студент вновь обращается к уже изученному (пройденному) учебному материалу.

Студенты с ограниченными возможностями здоровья, в отличие от остальных студентов, имеют свои специфические особенности восприятия, переработки материала. Обучающиеся инвалиды, могут обучаться по индивидуальному учебному плану в установленные сроки с учетом особенностей и образовательных потребностей конкретного обучающегося. Дополнительные образовательные технологии.

Проведение учебного процесса может быть организовано с использованием ЭИОС университета и в цифровой среде (группы в социальных сетях, электронная почта, видеосвязь и др. платформы). Учебные занятия с применением ДОТ проходят в соответствии с утвержденным расписанием. Текущий контроль и промежуточная аттестация обучающихся проводится с применением ДОТ.

Оценочные материалы при формировании рабочих программ дисциплин (модулей)

Специальность 20.05.01 Пожарная безопасность

Специализация: Противопожарная профилактика и аудит

Дисциплина: Физика

Формируемые компетенции:

1. Описание показателей, критериев и шкал оценивания компетенций.

Показатели и критерии оценивания компетенций

Объект	Уровни сформированности	Критерий оценивания
оценки	компетенций	результатов обучения
Обучающийся	Низкий уровень Пороговый уровень Повышенный уровень Высокий уровень	Уровень результатов обучения не ниже порогового

Шкалы оценивания компетенций при сдаче экзамена или зачета с оценкой

Достигнутый	Характеристика уровня сформированности	Шкала оценивания
уровень результата обучения	компетенций	Экзамен или зачет с оценкой
Низкий уровень	Обучающийся: -обнаружил пробелы в знаниях основного учебно-программного материала; -допустил принципиальные ошибки в выполнении заданий, предусмотренных программой; -не может продолжить обучение или приступить к профессиональной деятельности по окончании программы без дополнительных занятий по соответствующей дисциплине.	Неудовлетворительно
Пороговый уровень	Обучающийся: -обнаружил знание основного учебно-программного материала в объёме, необходимом для дальнейшей учебной и предстоящей профессиональной деятельности; -справляется с выполнением заданий, предусмотренных программой; -знаком с основной литературой, рекомендованной рабочей программой дисциплины; -допустил неточности в ответе на вопросы и при выполнении заданий по учебно-программному материалу, но обладает необходимыми знаниями для их устранения под руководством преподавателя.	Удовлетворительно
Повышенный уровень	Обучающийся: - обнаружил полное знание учебно-программного материала; -успешно выполнил задания, предусмотренные программой; -усвоил основную литературу, рекомендованную рабочей программой дисциплины; -показал систематический характер знаний учебно-программного материала; -способен к самостоятельному пополнению знаний по учебно-программному материалу и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности.	Хорошо

Высокий	Обучающийся:	Отлично
уровень	-обнаружил всесторонние, систематические и глубокие знания учебно-программного материала; -умеет свободно выполнять задания, предусмотренные программой;	
	-ознакомился с дополнительной литературой; -усвоил взаимосвязь основных понятий дисциплин и их значение для приобретения профессии; -проявил творческие способности в понимании учебно-программного материала.	

Шкалы оценивания компетенций при сдаче зачета

Достигнуты й уровень результата обучения	Характеристика уровня сформированности компетенций	Шкала оценивания
Пороговый уровень	Обучающийся: - обнаружил на зачете всесторонние, систематические и глубокие знания учебно-программного материала; - допустил небольшие упущения в ответах на вопросы, существенным образом не снижающие их качество; - допустил существенное упущение в ответе на один из вопросов, которое за тем было устранено студентом с помощью уточняющих вопросов; - допустил существенное упущение в ответах на вопросы, часть из которых была устранена студентом с помощью уточняющих вопросов	Зачтено
Низкий уровень	Обучающийся: - допустил существенные упущения при ответах на все вопросы преподавателя; - обнаружил пробелы более чем 50% в знаниях основного учебнопрограммного материала	Не зачтено

Описание шкал оценивания

Компетенции обучающегося оценивается следующим образом:

Планируемый уровень	Содержание шкалы оценивания достигнутого уровня результата обучения			
результатов освоения	Неудовлетворительн	Удовлетворительно	Хорошо	Отлично
Своения	Не зачтено	Зачтено	Зачтено	Зачтено
Знать	Неспособность	Обучающийся	Обучающийся	Обучающийся
	обучающегося	способен	демонстрирует	демонстрирует
	самостоятельно	самостоятельно	способность к	способность к
	продемонстрировать продемонстриро-вать наличие знаний при		самостоятельному	самостоятельно-му
			применению	применению знаний в
	решении заданий, решении заданий,		знаний при	выборе способа
	которые были которые были		решении заданий,	решения неизвестных
	представлены представлены		аналогичных тем,	или нестандартных
	преподавателем преподавателем вместе с образцом вместе с их решения.		которые представлял	заданий и при
			преподаватель,	консультативной
			и при его	поддержке в части
			консультативной	межлисшиппинарных

Уметь	Отсутствие у обучающегося самостоятельности в применении умений по использованию методов освоения учебной дисциплины.	Обучающийся демонстрирует самостоятельность в применении умений решения учебных заданий в полном соответствии с образцом, данным преподавателем.	Обучающийся продемонстрирует самостоятельное применение умений решения заданий, аналогичных тем, которые представлял преподаватель, и при его консультативной поддержке в части современных	Обучающийся демонстрирует самостоятельное применение умений решения неизвестных или нестандартных заданий и при консультативной поддержке преподавателя в части междисциплинарных связей.
			проблем.	0.5
Владеть	Неспособность самостоятельно проявить навык решения поставленной задачи по стандартному образцу повторно.	Обучающийся демонстрирует самостоятельность в применении навыка по заданиям, решение которых было показано преподавателем.	Обучающийся демонстрирует самостоятельное применение навыка решения заданий, аналогичных тем, которые представлял преподаватель, и при его консультативной поддержке в части современных проблем.	Обучающийся демонстрирует самостоятельное применение навыка решения неизвестных или нестандартных заданий и при консультативной поддержке преподавателя в части междисциплинарных связей.

2. Перечень вопросов и задач к экзаменам, зачетам, курсовому проектированию, лабораторным занятиям. Образец экзаменационного билета

Примерный перечень вопросов к лабораторным работам: Компетенция ОПК-1

- 1. Что такое измерение? Какие виды измерений вы знаете? Чем они характеризуются?
- 2. Что такое погрешность (ошибка) измерения? Какие виды погрешностей существуют? Причины их возникновения.
 - Что такое абсолютная и относительная ошибка? В каких единицах они измеряются?
 - 4. Алгоритм вычисления ошибок при прямых и косвенных измерениях.
 - 5. Правила измерения длины с помощью штангенциркуля и микрометра.
 - 6. Понятие силы, массы.
 - 7. 2й закон Ньютона и его формулировки.
 - 8. Что такое консервативная и диссипативная системы? Понятие потенциального поля.
 - 9. Сформулировать закон сохранения механической энергии.
 - 10. Средняя сила удара шарика о рельс (вывод).
 - 11. Что такое удар? Упругий и неупругий удары.
 - 12. Коэффициент восстановления.
 - 13. Закон сохранения импульса и закон сохранения энергии для абсолютно упругого удара.
 - 14. Закон сохранения импульса и закон сохранения энергии для абсолютно неупругого удара.
 - 15. Скорость шарика при прохождении положения равновесия (вывод).
 - 16. Момент инерции материальной точки, твердого тела.
 - 17. Плечо силы. Момент силы.
 - 18. Основной закон динамики вращательного движения твердого тела.
 - 19. Кинетическая энергия и работа при вращательном движении.
 - 20. Теорема Штейнера.
 - 21. Идеальный газ. Уравнение состояния идеального газа.
 - 22. Внутренняя энергия, работа идеального газа.
 - 23. Первое начало термодинамики. Применить его к изопроцессам.
 - 24. Адиабатический процесс (І-ое начало, уравнение Пуассона).
 - 25. Показатель адиабаты. Число степеней свободы і, теплоемкости Сри СV.
 - 26. Явления переноса.

- 27. Природа вязкости. Градиент скорости.
- 28. Уравнение вязкости (закон Ньютона).
- 29. Коэффициент вязкости (вывод расчетной формулы).
- 30. Число Рейнольдса. Время релаксации.
- 31. Механические бегущие волны: поперечные и продольные.
- 32. Уравнение бегущей волны.
- 33. Скорость поперечной и продольной волн.
- 34. Связь длины волны, скорости и частоты бегущей волны.
- 35. Стоячие волны, их принципиальное отличие от всех других видов волн.
- 36. Уравнение стоячей волны. Пучности и узлы.
- 37. Проводники в электрическом поле.
- 38. Электроемкость проводника.
- 39. Конденсатор. Электроемкость плоского конденсатора (вывод).
- 40. Электроемкости параллельно и последовательно соединенных конденсаторов.
- 41. Электрическая схема по измерению емкости конденсатора (назначение всех элементов).
- 42. Характеристики электрического тока, закон Ома в дифференциальной форме.
- 43. Замкнутая электрическая цепь. Закон Ома в интегральной форме.
- 44. Закон Джоуля-Ленца в интегральной форме.
- 45. Физический смысл ЭДС.
- 46. Полезная мощность, ее зависимость от сопротивления R. Условие максимума.
- 47. Напряженность поля. Потенциал. Связь между ними.
- 48. Силовые и эквипотенциальные поверхности поля точечного заряда.
- 49. Основные элементы электронно-лучевой трубки (чертеж).
- 50. Скорость электронов, прошедших второй анод. Вывод формулы.
- 51. Траектория электронов в пространстве отклоняющих пластин.
- 52. Диполь. Плечо диполя. Электрический момент диполя.
- 53. Явление поляризации диэлектрика. Вектор поляризации.
- 54. Физический смысл диэлектрической проницаемости вещества.
- 55. Сегнетоэлектрики, их отличия от остальных диэлектриков.
- 56. Гистерезис. Показать на петле гистерезиса Дост. (или Рост.) и Екоэрц.

- 1. Что такое магнетрон? Его схема (вид сверху).
- 2. Показать на схеме магнетрона направление векторов:
- а. v скорость электрона,
- b. В вектор индукции для любого направления тока,
- 4. Изобразить траекторию электронов в магнетроне при различных значениях токов в соленоиде.
 - 5. Закон Ампера.
 - 6. Сила Лоренца.
- 7. Вектор магнитной индукции, напряженность магнитного поля, магнитная проницаемость среды.
 - 8. Закон Био-Савара-Лапласа.
- 9. Вектор индукции В магнитного поля бесконечно длинного прямолинейного проводника с током I (формула).
 - 10. Вектор индукции В магнитного поля для отрезка проводника с током (формула).
 - 11. Вектор индукции В магнитного поля в центре кругового тока (формула).
 - 12. Явление электромагнитной индукции. Определение. Правило Ленца.
 - 13. Закон Фарадея, его вывод.
- 14. Токи при замыкании и размыкании цепи. Явление самоиндукции, ЭДС самоиндукции (формула).
 - 15. Индуктивность катушки. Взаимная индуктивность катушек.
- 16. Вихревые токи. Вредны они или полезны? Почему сердечники трансформаторов не делают сплошными?
 - 17. Какие световые волны являются когерентными?
 - 18. Интерференция, определение.
- 19. Геометрическая и оптическая длина пути, оптическая разность хода, условия максимума и минимума.
 - 20. Установка для «колец Ньютона», ход лучей в ней.
 - 21. Практическое применение явления интерференции света.
 - 22. Дифракция света, определение.

- 23. Принцип Гюйгенса Френеля.
- 24. Фронт волны точечного и бесконечно удаленного источников, рисунок.
- 25. Метод зон Френеля для круглого отверстия. Условия максимума и минимума в точке М экрана.
 - 26. Метод зон для щели, условия максимума и минимума.
 - 27. Внешний фотоэффект, определение.
 - 28. Уравнение фотоэффекта.
 - 29. Законы фотоэффекта.
 - 30. Устройство фотоэлемента.
 - 31. Принцип работы фотоумножителя.
 - 32. Модели атома Томсона, Резерфорда, Бора.33. Постулаты Бора и происхождение линейчатых спектров.
- 34. Имеется ли какая-либо связь между частотой обращения электрона вокруг ядра атома водорода и частотой его излучения?
 - 35. Вывести формулы для определения скорости электрона на пй орбите и радиуса пй орбиты.
- 36. Охарактеризовать изменения кинетической, потенциальной и полной энергий электрона в атоме при его удалении от ядра.
 - 37. Что такое валентная зона, запрещенная зона и зона проводимости?
 - 38. Какие полупроводники называются собственными, а какие примесными?
- 39. От чего зависит концентрация свободных носителей заряда в п-полупроводнике и в р-полупроводнике?
 - 40. Особенности температурной зависимости электропроводности полупроводников.
 - 41. Особенности температурной зависимости электропроводности металлов.
 - 42. Поглощение, спонтанное и вынужденное излучения.
 - 43. Основные компоненты оптического квантового генератора. Охарактеризовать их.
 - 44. Какое состояние среды называется инверсным?
 - 45. Почему смесь гелия и неона является хорошей активной средой для газового ОКГ?

Примерное содержание задач для РГР 1

Компетенции ОПК-1:

1 семестр:

- 1 задача: Камень брошен вертикально вверх с начальной скоростью . По истечении, какого времени находится на высоте ? Найти скорость камня на этой высоте. Сопротивлением воздуха пренебречь. Принять .
- 2 задача: Звуковые колебания, имеющие частоту и амплитуду, распространяются в упругой среде. Длина волны. Найти: 1) скорость распространения волн; 2) максимальную скорость частиц среды.
- 3 задача: Диск радиусом вращается согласно уравнению , где , , . Определить тангенциальное, нормальное и полное а, ускорения точек на окружности диска для момента времени .
- 4 задача: Плотность газа ρ при давлении p=96 кПа и темпе¬ратуре t=0°C равна 1,35 г/л. Найти молярную массу М газа.
- 5 задача: Определить давления p1 и p2 газа, содержащего N=109 молекул и имеющего объем V=1 см3, при температурах T1=3 K и T2=1000 K.
- 6 задача: К батарее с ЭДС ϵ = 300 В включены два плоских конденсатора емкостями C1 = $2\pi\Phi$ и C2 = $3\pi\Phi$. Определить заряд Q и напряжение U на пластинках конденсаторов при последовательном и параллельном соединениях.
- 7 задача: Два одинаковых заряженных шара находятся на расстоянии . Сила отталкивания шаров . После того как шары привели в соприкосновение и удалили друг от друга на прежнее расстояние, сила отталкиванья возросла и стала равной . Вычислить заряды q1 и q2, которые были на шарах до их соприкосновения. Диаметр шаров считать много меньшим расстояния между ними.
- 8 задача: Электрон в невозбужденном атоме водорода движется вокруг ядра по окружности радиусом . Вычислить магнитный момент эквивалентного кругового тока и механический момент М, действующий на круговой ток, если атом помещен в магнитное поле, линии индукции которого параллельны плоскости орбиты электрона. Магнитная индукция В поля равна 0,1Тл.
- 9 задача: Электрическое поле создано двумя точечными зарядами и , находящимися на расстоянии друг от друга. Определить напряженность поля в точке, удаленной от первого заряда на и от второго на .

Примерное содержание задач для РГР2 Компетенции ОПК-1:

- 1 задача: На концах медного провода длиной 1=5 м поддерживается напряжение U=1 В. Определить плотность тока j в проводе.
- 2 задача: По тонкому проводнику, изогнутому в виде правильного шестиугольника со стороной а =10 см, идет ток I = 20 А. Определить магнитную индукцию В в центре шестиугольника.
- 3 задача: В однородном магнитном поле с индукцией B=0.01 Тл помещен прямой проводник длиной I=20 см (подводящие провода находятся вне поля). Определить силу F, действующую на проводник, если по нему течет ток I=50 A, а угол ϕ между направлением тока и вектором магнитной индукции равен 30° .
- 4 задача: Оптическая разность хода \Box двух интерферирующих волн монохроматического света равна 0,3 λ . Определить разность фаз \Box ϕ .
- 5 задача: Определить энергию фотона єфотона, соответствующего второй линии в первой инфракрасной серии (серии Пашена) атома водорода.
- 6 задача: Какую часть массы ядра нейтрального атома плутония составляет масса его электронной оболочки?
- 7 задача: Радиус второго темного кольца Ньютона в отраженном свете r2=0,4 мм. Определить радиус R кривизны плосковыпуклой линзы, взятой для опыта, если она освещается монохроматическим светом с длиной волны $\lambda=0,64$ мкм.
- 8 задача: Определить энергию є фотона, испускаемого при переходе электрона в атоме водорода с третьего энергетического уровня на основной.

Примерные вопросы по защите РГР 1, РГР 2 и задач к практическим занятиям Компетенции ОПК-1:

- 1. Какие основные законы и явления используются в данной задаче?
- 2. Каков физический смысл задачи?
- 3. Рассказать ход решения задачи.
- 4. Почему при решении задачи используется определенная формула?
- 5. Как выбирается формула для решения задачи?
- 6. Может ли быть другое решение задачи?
- 7. Можно ли интегральное решение задачи заменить дифференциальным?
- 8. Какие модели используются при решении задачи?
- 9. Какие допущения сделаны при решении задачи?
- 10. Какая размерность применена при решении задачи?
- 11. Можно ли решить задачу в другой системе, например СГС?

Примерные практические задачи (задания) и ситуации Компетенции ОПК-1:

- 1. Камень брошен вертикально вверх с начальной скоростью . По истечении, какого времени находится на высоте ? Найти скорость камня на этой высоте. Сопротивлением воздуха пренебречь. Принять .
- 2. По дуге окружности радиусом движется точка. В некоторый момент времени нормальное ускорение точки ; в этот момент векторы полного и нормального ускорений образуют угол . Найти скорость и тангенциальное ускорение точки.
- 3. Тело, брошенное с башни в горизонтальном направлении со скоростью, упало на землю на расстоянии S (от основании башни) вдвое большем высоты h башни. Найти высоту башни.
- 4. Диск радиусом вращается согласно уравнению , где , , . Определить тангенциальное, нормальное и полное а, ускорения точек на окружности диска для момента времени .
- 5. Винт аэросаней вращается с частотой . Скорость поступательного движения аэросаней равна . С какой скоростью и движется один из концов винта, если радиус винта равен .
- 6. Определить давления p1 и p2 газа, содержащего N=109 молекул и имеющего объем V=1 см3, при температурах T1=3 K и T2=1000 K.
- 7. Какой объем V занимает смесь азота массой m1=1 кг и гелия массой m2=1 кг при нормальных условиях?
- 8. В баллоне вместимостью V = 15 л находится смесь, содержащая m1 = 10 г водорода, m2 = 64 г водяного пара и m3 = 60 г оксида углерода. Температура смеси $t = 27^{\circ}$. Определить давление.
- 9. Какую ускоряющую разность потенциалов U должен пройти электрон, чтобы получить скорость $v=8\,\mathrm{Mm/c}$?
- 10. Заряд равномерно распределен по бесконечной плоскости с поверхностной плотностью $\sigma = 10$ нКл/м2. Определить разность потенциалов двух точек поля, одна из которых находится на плоскости, а другая удалена от нее на расстояние a = 10 см.
- 11. К батарее с ЭДС ε = 300 В включены два плоских конденсатора емкостями C1 = 2пФ и C2 = 3пФ. Определить заряд Q и напряжение U на пластинках конденсаторов при последовательном и

параллельном соединениях.

12. На концах медного провода длиной l = 5 м поддерживается напряжение U = 1 В. Определить плотность тока j в проводе.

Компетенции ОПК-1:

2 семестр:

- 1. По тонкому проводнику, изогнутому в виде пра¬вильного шестиугольника со стороной а =10 см, идет ток I = 20 A. Определить магнитную индукцию В в центре шестиугольника.
- 2. Обмотка соленоида содержит два слоя, плотно при \neg легающих друг к другу витков провода диаметром d=0,2 мм. Определить магнитную индукцию B на оси соленоида, если по проводу идет ток I=0,5 A.
- 3 В однородном магнитном поле с индукцией B=0.01 Тл помещен прямой проводник длиной l=20 см (подводящие провода находятся вне поля). Определить силу F, действующую на проводник, если по нему течет ток I=50 A, а угол ϕ между направлением тока и вектором магнитной индукции равен 30° .
- 4. Рамка с током I = 5 A содержит N = 20 витков тон \neg кого провода. Определить магнитный момент рт рамки с током, если ее площадь S = 10см2.
- 5. По витку радиусом R=10 см течет ток I=50 А. Виток помещен в однородное магнитное поле $(B=0,2\,\,{\rm Tr})$. Определить момент силы M, действующей на виток, если плоскость витка составляет угол $\phi=60^{\circ}$ с линиями индук \neg ции.
- 6. Протон влетел в магнитное поле перпендикулярно линиям индукции и описал дугу радиусом R = 10 см. Определить скорость υ протона, если магнитная индукция B = 1 Тл.
- 7. Радиус второго темного кольца Ньютона в отраженном свете r2 =0,4 мм. Определить радиус R кривизны плосковыпуклой линзы, взятой для опыта, если она освещается монохроматическим светом с длиной волны λ = 0,64 мкм. [125 мм]
- 8. На пластину с щелью, ширина которой a=0.05 мм, падает нормально монохроматический свет с длиной вол¬ны $\lambda=0.7$ мкм. Определить угол ϕ отклонения лучей, соответствующий первому дифракционному максимуму.
- 9. Дифракционная решетка, освещенная нормально падающим монохроматическим светом, отклоняет спектр третьего порядка на угол $\phi 1 = 30^{\circ}$. На какой угол $\phi 2$ отклоняет она спектр четвертого порядка?
- 10. Угол преломления луча в жидкости i2 = 35°. Опре¬делить показатель преломления п жидкости, если известно, что отраженный пучок света максимально поляризован.
- 11. Вычислить длину волны де Бройля λ для электрона, прошедшего ускоряющую разность потенциалов U = 22,5 B.
- 12. Вычислить длину волны де Бройля λ , для протона, движущегося со скоростью $\upsilon=0.6$ с (с скорость света в вакууме). Оценить с помощью соотношения неопределенностей минимальную кинетическую энергию Ттіпэлектрона, движущегося внутри сферической области диаметром d=0.1 нм.

Примерный перечень вопросов к зачету:

Компетенции ОПК-1:

1 семестр:

Механика

- 1. Материальная точка. Системы отсчета. Кинематика поступательного движения. Траектория. Путь. Средняя скорость. Мгновенная скорость.
- 2. Среднее ускорение. Мгновенное ускорение. Касательное и нормальное ускорение. Равномерное и равноускоренное движение.
 - 3. Движение тела, брошенного под углом к горизонту.
- 4. Виды взаимодействий в природе. Характеристики некоторых сил: сила тяжести и вес тела, силы трения и упругости.
 - 5. Первый закон Ньютона. Инерциальные системы отсчета. Примеры.
- 6. Второй закон Ньютона. Дифференциальная форма второго закона Ньютона. Третий закон Ньютона. Границы применимости законов Ньютона. Сложение сил.
- 7. Определение механической работы (постоянной и меняющейся) силы. Графическое представление работы.
 - 8. Кинетическая энергия. Связь кинетической энергии с работой. Примеры.
- 9. Консервативные силы. Потенциальное поле. Потенциальная энергия и ее связь с работой. Потенциальная энергия тела в поле тяжести Земли. Энергия сжатой пружины.
 - 10. Механическая энергия. Закон сохранения механической энергии. Примеры.
- 11. Кинематика вращательного движения. Угловое перемещение, угловая скорость и угловое ускорение. Векторный характер величин. Частота и период вращения.
- 12. Определение момента силы. Плечо силы. Основное уравнение динамики вращательного движения.

- 13. Момент инерции абсолютно твердого тела (вычисления моментов инерции). Физический смысл момента инерции. Теорема Штейнера.
 - 14. Определение момента импульса. Закон сохранения момента импульса. Примеры.
- 15. Кинетическая энергия вращающегося тела. Работа при вращательном движении. Энергия катящегося цилиндра.
- 16. Постулаты Эйнштейна. Преобразования Лоренца. Следствия из преобразований Лоренца. Одновременность.
 - 17. Следствия из преобразований Лоренца. Лоренцево сокращение длины.
 - 18. Следствия из преобразований Лоренца. Замедление времени. Интервал.
 - 19. Релятивистская динамика. Релятивистская масса. Взаимосвязь энергии и массы.

Термодинамика

- 20. Основное уравнение молекулярно-кинетической теории идеального газа.
- 21. Идеальный газ. Газовые законы. Уравнение Менделеева-Клапейрона.
- 22. Закон Максвелла для распределения молекул по скоростям.
- 23. Барометрическая формула. Распределение Больцмана.
- 24. Число степеней свободы. Закон Больцмана о равнораспределении энергии по степеням свободы.
- 25. Внутренняя энергия идеального газа. Работа газа при расширении. Работа газа при различных процессах.
- 26. Первое начало термодинамики. Применение первого начала термодинамики к изопроцессам.
 - 27. Теплоемкость газов. Уравнение Майера.
 - 28. Круговой процесс. Обратимый, необратимый процесс. Цикл Карно и его КПД.
- 29. Статистические закономерности распределения молекул газа по объему. Энтропия и ее статистическое толкование. Изменение энтропии. Расчет изменения энтропии при различных процессах.
- 30. Взаимодействие молекул. Уравнение состояния реального газа. Изотермы реального газа. Внутренняя энергия реального газа.

Электричество и постоянный ток

- 31. Закон Кулона. Применение закона Кулона в случае неточечных заряженных тел.
- 32. Электрическое поле. Напряженность электростатического поля. Принцип суперпозиции. Силовые линии.
- 33. Смещение (индукция) электростатического поля. Поток вектора смещения. Теорема Остроградского-Гаусса для электростатического поля. Применение теоремы Остроградского-Гаусса для расчета электростатического поля бесконечной равномерно заряженной сферы.
 - 34. Теорема Остроградского-Гаусса для электростатического поля.
- 35. Применение теоремы Остроградского-Гаусса для расчета электростатического поля бесконечной равномерно заряженной плоскости.
 - 36. Теорема Остроградского-Гаусса для электростатического поля.
- 37. Применение теоремы Остроградского-Гаусса для расчета электростатического поля бесконечной равномерно заряженного шара.
- 38. Работа сил электростатического поля по перемещению заряда. Циркуляция вектора напряженности электростатического поля.
 - 39. Потенциал электростатического поля. Эквипотенциальные поверхности.
- 40. Взаимосвязь напряженности и потенциала. Взаимное расположение силовых линий и эквипотенциальных поверхностей.
 - 41. Виды диэлектриков. Вектор поляризации. Диэлектрическая восприимчивость
- 42. Электрическое поле в диэлектрике. Диэлектрическая проницаемость и ее связь с восприимчивостью.
- 43. Проводники в электростатическом поле. Конденсаторы. Электроемкость плоского конденсатора.
 - 44. Энергия системы зарядов. Энергия электростатического поля.
- 45. Характеристики постоянного тока. Плотность тока. Закон Ома в дифференциальной форме. Сопротивление проводников
 - 46. Закон Ома для участка цепи и для полной цепи. Электродвижущая сила источника тока.
 - 47. Правила Кирхгофа для расчета электрических цепей.
 - 48. Работа и мощность тока. Закон Джоуля-Ленца.
 - 49. Классическая теория электропроводности.

Примерный перечень вопросов к экзамену:

Компетенции ОПК-1:

Магнитное поле

- 1. Напряженность магнитного поля. Закон Био-Савара-Лапласа. Применение закона Био-Савара-Лапласа для расчета индукции магнитного поля бесконечного, прямого проводника с током.
- 2. Закон полного тока (теорема о циркуляции вектора индукции магнитного поля). Применение закона полного тока для расчета поля бесконечно длинного соленоида. Поток вектора магнитной индукции. Теорема Остроградского-Гаусса для магнитного поля.
 - 3. Сила Лоренца. Движение заряженной частицы в магнитном поле. Эффект Холла.
 - 4. Сила Ампера. Взаимодействие параллельных токов.
 - 5. Магнитные моменты электронов и атомов. Диамагнетизм. Магнетики.
- 6. Вектор намагниченности. Магнитная восприимчивость. Диа-, пара-магнетики. Магнитное поле в веществе. Магнитная проницаемость. Ферромагнетики.
 - 7. Явления электромагнитной индукции. Вывод закона Фарадея-Ленца. Правило Ленца.
- 8. Самоиндукция. Индуктивность. Индуктивность бесконечно длинного соленоида. Энергия магнитного поля. Объемная плотность энергии.
 - 9. Система уравнений Максвелла. Значение теории Максвелла.

Колебания

- 1. Гармонические колебания и их характеристики. Кинематика гармонических колебаний. Дифференциальное уравнение гармонических колебаний. Энергия гармонических колебаний (механических и электрических).
- 2. Дифференциальное уравнение гармонических колебаний пружинного и физического маятников. Период колебаний этих маятников.
 - 3. Гармонические колебания в колебательном контуре. Формула Томсона.
- 4. Дифференциальное уравнение затухающих механических и электрических колебаний. Логарифмический декремент затухания.
- 5. Дифференциальное уравнение вынужденных механических колебаний и его решение. Резонансные кривые.
- 6. Переменный ток. Полное сопротивление цепи переменного тока. Последовательное и параллельное соединение.
- 7. Сложение колебаний одного направления одинаковой частоты. Векторные диаграммы. Сложение колебаний одного направления. Биения. Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу.
- 8. Волновые процессы. Продольные и поперечные волны. Уравнение бегущей волны. Волновое уравнение. Волновой пакет. Групповая скорость.
 - 9. Волновая и квантовая оптика. Квантовая механика
 - 10. Электромагнитные волны. Характеристики световых волн. Интенсивность световой волны.
- 11. Когерентность световых волн. Интерференция света от двух источников. Интерференционные условия для разности фаз и разности хода.
 - 12. Методы наблюдения интерференции света (бипризма Френеля, опыт Юнга)
- 13. Интерференция в тонких пленках. Вывод формулы для оптической разности хода лучей в тонкой пленке.
- 14. Виды дифракции. Принцип Гюйгенса-Френеля. Метод зон Френеля. Дифракция света на круглом отверстии, от круглого диска, на узкой щели, на дифракционной решетке.
- 15. Дифракция рентгеновских лучей. Условие Вульфа-Брэггов. Применение дифракции рентгеновского излучения.
- 16. Естественный и поляризованный свет. Закон Брюстера. Закон Малюса. Поляризация света при двойном лучепреломлении. Дихроизм. Призма Николя. Оптическая активность вещества.
- 17. Характеристики теплового излучения. Закон Кирхгофа. Закон Стефана- Больцмана. Закон смещения Вина. Закон Рэлея –Джинса. Ультрафиолетовая катастрофа. Формула Планка. Законы теплового излучения и их получение из формулы Планка.
- 18. Законы фотоэффекта. Вольтамперная характеристика фототока. Задерживающий потенциал. Ток насыщения. Работа выхода. Уравнение Эйнштейна для фотоэффекта. Красная граница фотоэффекта.
 - 19. Фотоны. Давление света . Эффект Комптона. Корпускулярно-волновой дуализм света.
 - 20. Опыт Резерфорда. Постулаты Бора.
- 21. Корпускулярно-волновой дуализм вещества. Длина волны де-Бройля. Экспериментальные доказательства волновых свойств частиц.
- 22. Соотношение неопределенностей Гейзенберга. Вывод соотношения неопределенностей на основе волновых свойств частиц.
- 23. Уравнение Шредингера. Физический смысл пси-функции. Решение уравнения Шредингера для бесконечно-глубокой потенциальной ямы.
 - 24. Потенциальный барьер. Туннельный эффект. Гармонический осциллятор.
 - 25. Закономерности в атомных спектрах. Формула Бальмера. Боровская модель атома

водорода. Достоинства и недостатки теории Бора.

- 26. Квантовомеханическая модель атома водорода. Квантовые числа. Вырожденные состояния. Правила отбора.
 - 27. Спонтанное и вынужденное излучение. Лазеры.
- 28. Энергетические зоны в кристаллах. Структура энергетических зон металлов, полупроводников и диэлектриков. Полупроводники (собственные и примесные). Структура энергетических зон примесных и собственных полупроводников.

3. Тестовые задания. Оценка по результатам тестирования.

3.1. Примерные задания теста

Задание 1 (ОПК-1)

Выберите правильный вариант ответа.

Условие задания: Последовательность в порядке возрастания радиуса

- 1: электрон
- 2: ядро атома
- 3: атом
- 4: молекула

Задание 2 (ОПК-1)

Последовательность в порядке возрастания длительности

- 1: нс
- 2: мкс
- 3: мс
- 4: c
- 5: мин
- 6: час

Задание 3 (ОПК-1)

На рисунке вектор мгновенной скорости точки при ее движении по кривой АВ это:

- 1. Вектор 1
- 2. Вектор 2
- 3. Вектор 3
- 4. Вектор 4
- 5. нет правильного ответа

Задание 4 (ОПК-1)

Указать правильный ответ

Цикл Карно:

- 1. Состоит из двух изотерм и двух изобар
- 2. Состоит из двух изохор и двух изобар
- 3. Состоит из двух изотерм и двух адиабат
- 4. Это круговой процесс

Задание 5 (ОПК-1)

Последовательность в порядке возрастания длительности

Последовательность в порядке возрастания

- 1: мПа
- 2: Па
- 3: кПа
- 4: МПа

Задание 6 (ОПК-1)

Указать правильный ответ

Цикл Карно:

- 1. Состоит из двух изотерм и двух изобар
- 2. Состоит из двух изохор и двух изобар
- 3. Состоит из двух изотерм и двух адиабат
- 4. Это круговой процесс

Задание (ОПК-1)

Последовательность в порядке возрастания твердости материала

- 1: пар
- 2: жидкость
- 3: сталь
- 4: алмаз
- 5: нанокомпозитные металлические покрытия

Задание 8 (ОПК-1)

Соответствие между видами колебательных систем и их периодами

Пружинный маятник

Физический маятник

Колебательный контур

Математический маятник

Задание 9 (ОПК-1)

Ввести правильный ответ с клавиатуры

Первичная обмотка трансформатора имеет $\omega 1=10000$ витков провода и включена в сеть переменного тока с напряжением U1=100 В. Число витков вторичной обмотки $\omega 2$, если ее сопротивление r=1 Ом, напряжение на концах U2=4 В, а сила тока в ней I=1A, будет равно:

Задание 10 (ОПК-1)

Указать правильный ответ

Закон сохранения электрического заряда:

- 1. в замкнутой системе энергия зарядов остается постоянной
- 2. в любой электрически изолированной системе сумма зарядов остается постоянной
- 3. в инерциальных системах отсчета сумма зарядов остается постоянной
- 4. заряд системы не зависит от скорости ее движения

Задание 11 (ОПК-1)

Указать правильный ответ

Сила, действующая на заряд, движущийся в магнитном поле,

- 1. обратно пропорциональна его скорости
- 2. не зависит от его скорости
- 3. пропорциональна квадрату его скорости
- 4. прямо пропорциональна его скорости

Задание 12 (ОПК-1)

Укажите правильный ответ

Диэлектрик отличается от проводника тем, что

- 1. в нем не возникает разделения зарядов в электрическом поле
- 2. он состоит из нейтральных молекул, а проводник из ионов
- 3. он не оказывает влияние на внешнее электрическое поле
- 4. в нем практически нет свободных электронов

Задание 13 (ОПК-1)

Указать правильный ответ

Дисперсия света - это

- 1. зависимость показателя преломления вещества от частоты света
- 2. зависимость показателя преломления от вещества
- 3. зависимость фазовой скорости световых волн от частоты света
- 4. зависимость скорости света от среды
- 5. нет верного ответа

Задание 14 (ОПК-1)

Указать правильный ответ

Тепловое излучение совершается

- 1. за счет энергии, выделяющейся при химической реакции
- 2. за счет внутренней энергии тела

- 3. за счет энергии валентных электронов
- 4. за счет люминесценции электронов
- 5. нет правильного ответа

Полный комплект тестовых заданий в корпоративной тестовой оболочке АСТ размещен на сервере УИТ ДВГУПС, а также на сайте Университета в разделе СДО ДВГУПС (образовательная среда в личном кабинете преподавателя).

Полный комплект тестовых заданий в корпоративной тестовой оболочке АСТ размещен на сервере УИТ ДВГУПС, а также на сайте Университета в разделе СДО ДВГУПС (образовательная среда в личном кабинете преподавателя).

Соответствие между бальной системой и системой оценивания по результатам тестирования устанавливается посредством следующей таблицы:

Объект	Показатели	Оценка	Уровень
оценки	оценивания		результатов
	результатов обучения		обучения
Обучающийся	60 баллов и менее	«Неудовлетворительно»	Низкий уровень
	74 – 61 баллов	«Удовлетворительно»	Пороговый уровень
	84 – 75 баллов	«Хорошо»	Повышенный уровень
	100 – 85 баллов	«Отлично»	Высокий уровень

4. Оценка ответа обучающегося на вопросы, задачу (задание) экзаменационного билета, зачета, курсового проектирования.

Оценка ответа обучающегося на вопросы, задачу (задание) экзаменационного билета, зачета

Элементы оценивания	Содержание шкалы оценивания			
	Неудовлетворительн	Удовлетворитель	Хорошо	Отлично
	Не зачтено	Зачтено	Зачтено	Зачтено
Соответствие ответов формулировкам вопросов (заданий)	Полное несоответствие по всем вопросам.	Значительные погрешности.	Незначительные погрешности.	Полное соответствие.
Структура, последовательность и логика ответа. Умение четко, понятно, грамотно и свободно излагать свои мысли	Полное несоответствие критерию.	Значительное несоответствие критерию.	Незначительное несоответствие критерию.	Соответствие критерию при ответе на все вопросы.
Знание нормативных, правовых документов и специальной литературы	Полное незнание нормативной и правовой базы и специальной литературы	Имеют место существенные упущения (незнание большей части из документов и специальной литературы по названию, содержанию и т.д.).	Имеют место несущественные упущения и незнание отдельных (единичных) работ из числа обязательной литературы.	Полное соответствие данному критерию ответов на все вопросы.
Умение увязывать теорию с практикой, в том числе в области профессиональной работы	Умение связать теорию с практикой работы не проявляется.	Умение связать вопросы теории и практики проявляется редко.	Умение связать вопросы теории и практики в основном проявляется.	Полное соответствие данному критерию. Способность интегрировать знания и привлекать сведения из различных научных сфер.

Качество ответов на	На все	Ответы на	. Даны неполные	Даны верные ответы
дополнительные	дополнительные	большую часть	ответы на	на все
вопросы	вопросы	дополнительных	дополнительные	дополнительные
	преподавателя даны	вопросов	вопросы	вопросы
	неверные ответы.	преподавателя	преподавателя.	преподавателя.
		даны неверно.	2. Дан один	
			неверный ответ на	
			дополнительные	
			вопросы	
			преподавателя.	

Примечание: итоговая оценка формируется как средняя арифметическая результатов элементов оценивания.